Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171731, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492602

RESUMO

Intercropping legume with grass has potential to increase biomass and protein yield via biological N2-fixation (BNF) benefits, whereas the joint effects of biochar (BC) coupled with deficit irrigation on intercropping systems remain elusive. A 15N isotope-labelled experiment was implemented to investigate morpho-physiological responses of faba bean-ryegrass intercrops on low- (550 °C, LTBC) or high-temperature BC (800 °C, HTBC) amended sandy-loam soil under full (FI), deficit (DI) and partial root-zone drying irrigation (PRD). LTBC and HTBC significantly reduced intrinsic water-use efficiency (WUE) by 12 and 14 %, and instantaneous WUE by 8 and 16 %, respectively, in faba bean leaves, despite improved photosynthetic (An) and transpiration rate (Tr), and stomatal conductance (gs). Compared to FI, DI and PRD lowered faba bean An, gs and Tr, but enhanced leaf-scale and time-integrated WUE as proxied by the diminished shoots Δ13C. PRD enhanced WUE as lower gs, Tr and guard cell length than DI-plants. Despite higher carbon ([C]) and N concentration ([N]) in faba bean shoots amended by BC, the aboveground C- and N-pool of faba bean were reduced, while these pools increased for ryegrass. The N-use efficiency (NUE) in faba bean shoots was reduced by 9 and 14 % for LTBC and HTBC, respectively, but not for ryegrass. Interestingly, ryegrass shoots had 52 % higher NUE than faba bean shoots. The N derived from atmosphere (% Ndfa) was increased by 2 and 9 % under LTBC and HTBC, respectively, while it decreased slightly by reduced irrigation. Quantity of BNF in faba bean aboveground biomass decreased with HTBC coupled with reduced irrigation, mainly towards decreased biomass and soil N uptake by faba bean. Therefore, HTBC might not be a feasible option to improve WUE and BNF in faba bean-ryegrass intercropping, but PRD is permissible as the clear trade-off between BC and PRD.


Assuntos
Carvão Vegetal , Lolium , Vicia faba , Fixação de Nitrogênio , Folhas de Planta/fisiologia , Solo
2.
Biol Rev Camb Philos Soc ; 98(4): 1184-1199, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914985

RESUMO

Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.


Assuntos
Carbono , Celulases , Solo , Sequestro de Carbono
3.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850507

RESUMO

Agricultural droughts cause a great reduction in winter wheat productivity; therefore, timely and precise irrigation recommendations are needed to alleviate the impact. This study aims to assess drought stress in winter wheat with the use of an unmanned aerial system (UAS) with multispectral and thermal sensors. High-resolution Water Deficit Index (WDI) maps were derived to assess crop drought stress and evaluate winter wheat actual evapotranspiration rate (ETa). However, the estimation of WDI needs to be improved by using more appropriate vegetation indices as a proximate of the fraction of vegetation cover. The experiments involved six irrigation levels of winter wheat in the harvest years 2019 and 2020 at Luancheng, North China Plain on seasonal and diurnal timescales. Additionally, WDI derived from several vegetation indices (VIs) were compared: near-infrared-, red edge-, and RGB-based. The WDIs derived from different VIs were highly correlated with each other and had similar performances. The WDI had a consistently high correlation to stomatal conductance during the whole season (R2 between 0.63-0.99) and the correlation was the highest in the middle of the growing season. On the contrary, the correlation between WDI and leaf water potential increased as the season progressed with R2 up to 0.99. Additionally, WDI and ETa had a strong connection to soil water status with R2 up to 0.93 to the fraction of transpirable soil water and 0.94 to the soil water change at 2 m depth at the hourly rate. The results indicated that WDI derived from multispectral and thermal sensors was a reliable factor in assessing the water status of the crop for irrigation scheduling.


Assuntos
Solo , Triticum , Estações do Ano , China , Água
4.
Environ Geochem Health ; 45(1): 227-246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35934744

RESUMO

Plants antioxidative system is the first line of defense against oxidative stress caused secondarily by toxic ions under salinity. Plants with pre-activated antioxidative system can better adapt to salinity and can result in higher growth and yield. The current experiment was conducted to assess the adaptation of two tomato genotypes (Riogrande and Green Gold) with pre-activated antioxidative enzymes against salt stress. Tomato seedlings were exposed to mild stress (Ni: 0, 15 and 30 mg L-1) for three weeks to activate the antioxidative enzymes. The seedlings with pre-activated antioxidative enzymes were then grown under severe stress in hydroponics (0, 75 and 150 mM NaCl) and soil (control, 7.5 and 15 dS m-1) to check the adaptation, growth and yield. The results showed that Ni toxicity significantly enhanced activities of antioxidant enzymes (SOD, CAT, APX and POX) in both the genotypes and reduced growth with higher values in genotype Riogrande than Green Gold. The seedlings with pre-activated antioxidant enzymes showed better growth, low Na+ and high K+ uptake and maintained higher antioxidative enzymes activity than non-treated seedlings after four weeks of salt stress treatment in hydroponics. Similarly, the results in soil salinity treatment of the Ni pretreated seedlings showed higher yield characteristics (fruit yield per plant, average fruit weight and fruit diameter) than non-treated seedlings. However, Ni pretreatment had nonsignificant effect on tomato fruit quality characteristics like fruit dry matter percentage, total soluble solids, fruit juice pH and titratable acidity. The genotype Riogrande showed better growth, yield and fruit quality than Green Gold due to higher activity of antioxidant enzymes and better ion homeostasis as a result of Ni pretreatment. The results suggest that pre-activation antioxidant enzymes by Ni treatment proved to be an effective strategy to attenuate salt stress for better growth and yield of tomato plants.


Assuntos
Solanum lycopersicum , Solanum , Antioxidantes , Níquel/toxicidade , Estresse Salino , Íons , Homeostase , Solo , Plântula
5.
Glob Chang Biol ; 28(18): 5480-5491, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713965

RESUMO

The natural abundance of stable nitrogen isotopes (δ15 N) provides insights into the N dynamics of terrestrial ecosystems, the determination of which is considered an effective approach for gaining a better understanding ecosystem N cycling. However, there is currently little information available regarding the patterns and mechanisms underlying the variation in foliar-soil δ15 N among mountain ecosystems. In this study, we examined the determinants of foliar-soil δ15 N in association with N transportation rates along an elevational gradient in the Hengduan Mountains. Despite the relatively high levels of available N produced from high N fixation and mineralization, we detected the lowest levels of foliar δ15 N at 3500 m a.s.l., reflecting the stronger vegetation N limitation at medium high elevations. The enhanced vegetation N limitation was driven by the combined effects of higher microbial immobilization and inherent plant dynamic (the shifts of δ15 N in vegetation preference, including vegetation community) with changing climate along the elevational gradient. Unexpectedly, we established that soil δ15 N was characterized by an undulating rise and uncoupled correlation with foliar δ15 N with increasing elevation, thereby indicating that litter input might not be a prominent driver of soil δ15 N. Conversely, soil nitrification and denitrification were found to make a more pronounced contribution to the pattern of soil δ15 N along the elevational gradient. Collectively, our results serve to highlight the importance of microbial immobilization in soil N dynamics and provide novel insights that will contribute to enhancing our understanding of N cycling as indicated by foliar-soil δ15 N along elevational gradients.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Plantas
6.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567127

RESUMO

Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates.

7.
Sci Total Environ ; 816: 151649, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34785223

RESUMO

Pyrolyzed biomass, generating biochar for use as soil amendment, is recognized as a promising strategy for carbon sequestration. Current understanding of the interactions between biochar, arbuscular mycorrhizal (AM), and plant photosynthesis, in terms of biochemical processes and CO2 uptake, is fragmentary. The aim of this study was to investigate the effects on photosynthesis in potato including maximum rate of carboxylation by Rubisco (Vcmax), maximum rate of electron transport rate for RuBP-regeneration (Jmax), mesophyll conductance (gm) and other plant traits. Four types of biochar (wheat or miscanthus straw pellets pyrolyzed at temperatures of either 550 °C or 700 °C) were amended into low phosphorus soil. Potato plants were inoculated with the AM fungus Rhizophagus irregularis (M+) or not (M-). The results showed that four types of biochar generally decreased nitrogen and phosphorus content of potato, especially the biochars pyrolyzed at high temperature. This negative effect of biochar on nutrient content was alleviated by AM. It was found that Vcmax was limited by low plant nitrogen content as well as leaf area and phosphorus content. Plant phosphorus content also limited Jmax, which was mutually constrained by Vcmax of leaves. Low gm was an additional limiting factor for photosynthesis. The gm was positively correlated to nitrogen content, which influenced the leaf anatomical structure by alteration of leaf mass per area. In conclusion, the influence of interactions between quality of biochar and AM symbiosis on photosynthesis of potato seems to relate to effects on plant nutrient content and leaf structures. Accordingly, a model for the dependence of Vcmax on nitrogen and phosphorus content and their interactive effect exhibited a high correlation coefficient. As potato plants form AM symbiosis under natural field conditions, the extent and interaction with the quality of amended biochar can be a determining factor for plant nutrient content, growth and yield.


Assuntos
Micorrizas , Solanum tuberosum , Carvão Vegetal , Fotossíntese , Folhas de Planta
8.
Sci Total Environ ; 806(Pt 1): 150513, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571228

RESUMO

Biochar has been advocated as a sustainable and eco-friendly practice to improve soil fertility and crop productivity which could aid in the mitigation of climate change. Nonetheless, the combined effects of biochar and irrigation on tobacco growth and soil nutrients in diverse soil types have been incompletely explored. We applied a split-root experiment to investigate the impacts of amendment with 2% softwood- (WBC) and wheat-straw biochar (SBC) on growth responses and rhizosphere soil nutrients availability of tobacco plants grown in a Ferralsol and an Anthrosol. All plants within same soil type received same amount of water daily by either conventional deficit irrigation (CDI) or alternate wetting-drying cycles irrigation (AWD). Compared to the un-amended controls, SBC addition enhanced biomass, carbon (C)-, phosphorus (P)- and potassium (K)-pool in the aboveground organs especially in Anthrosol, despite a negative effect on aboveground nitrogen (N)-pool. Regardless of soil type, biochar combined with AWD lowered root diameter while increased root tissue mass density to engage the plant in an acquisitive strategy for resources, therefore altered leaves stoichiometry as exemplified by lowered N/K, C/P and N/P and increased C/N. The addition of SBC induced a liming effect by increasing Anthrosol soil pH which was further amplified by AWD, but was unaffected on Ferralsol. Moreover, compared to the controls, SBC and AWD increased available P and K, and total C, total N and C/N ratio in the rhizosphere soil which coincided with the lowered soil C and N isotope composition (δ13C and δ15N), though a slight reduction in C and N stocks under AWD. However, such effects were not evident with WBC might be associated with its natures. Thus, combined SBC/AWD application might be an effective strategy to synergistically overcome nutrients restriction and improve tobacco productivity by intensifying nutrients cycling and optimizing plant growth strategies.


Assuntos
Rizosfera , Solo , Carvão Vegetal , Nutrientes
9.
Front Plant Sci ; 11: 949, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670338

RESUMO

We investigated if subsoil constraints to root development imposed by coarse sand were affected by drought and biochar application over two seasons. Biochar was applied to the subsoil of pots at 20-50 cm depth in concentrations of 0%, 1%, 2%, and 3% (B0, B1, B2, and B3). Maize was grown in the same pots 1 week and 12 months after biochar application. The maize plants were fully irrigated until flowering; thereafter, half of them were subjected to drought. A new method for observing root growth dynamics and root length density in situ, the Rootsnap sensor system, was developed. The sensors were installed at 50 cm depth just below the layer of biochar-amended subsoil. Using data from a smaller experiment with grass, the calculated root length densities from the sensors were compared with data from scanning of manually washed roots. In year 2, we investigated the effect of aged biochar on root growth using only the root wash and scanning method. The Rootsnap sensor revealed that the arrival time of the first root in B3 at the 50 cm depth averaged 47 days after planting, which was significantly earlier than in B0, by 9 days. The tendency for faster root proliferation in biochar-amended subsoil indicates that biochar reduced subsoil mechanical impedance and allowed roots to gain faster access to deep soil layers. A linear regression comparing root length density obtained from the Rootsnap sensor with the scanning method yielded an r 2 of 0.50. Our analysis using the scanning method further showed that under drought stress, maize roots responded with reduced root diameter and increased root length density at 50-70 cm depth in the first and second year, respectively. The trend under full irrigation was less clear, with significant decrease in root length density for B1 and B2 in year 2. Overall, reduction in subsoil mechanical impedance observed as early arrival of roots to the subsoil may prevent or delay the onset of drought and reduce leaching of nutrients in biochar-amended soil with positive implications for agricultural productivity.

10.
Sci Total Environ ; 728: 138891, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361364

RESUMO

Predicting how shifts in plant phenology affect species dominance remains challenging, because plant phenology and species dominance have been largely investigated independently. Moreover, most phenological research has primarily focused on phenological firsts (leaf-out and first flower dates), leading to a lack of representation of phenological lasts (leaf senescence and last flower) and full phenological periods (growing season length and flower duration). Here, we simultaneously investigated the effects of experimental warming on different phenological events of various species and species dominance in an alpine meadow on the Tibetan Plateau. Warming significantly advanced phenological firsts for most species but had variable effects on phenological lasts. As a result, warming tended to extend species' full phenological periods, although this trend was not significant for all species. Experimental warming reduced community evenness and differentially impacted species dominance. Shifts in full phenological periods, rather than a single shift in phenological firsts or phenological lasts, were associated with changes in species dominance. Species with lengthened full phenological periods under warming increased their dominance. Our results advance the understanding of how altered species-specific phenophases relate to changes in community structure in response to climate change.


Assuntos
Mudança Climática , Plantas , Flores , Estações do Ano , Temperatura
11.
Ann Bot ; 117(7): 1229-39, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27192706

RESUMO

BACKGROUND AND AIMS: The C4 perennial grass miscanthus has been found to be less sensitive to cold than most other C4 species, but still emerges later in spring than C3 species. Genotypic differences in miscanthus were investigated to identify genotypes with a high cold tolerance at low temperatures and quick recovery upon rising temperatures to enable them to exploit the early growing season in maritime cold climates. Suitable methods for field screening of cold tolerance in miscanthus were also identified. METHODS: Fourteen genotypes of M. sacchariflorus, M. sinensis, M. tinctorius and M. × giganteus were selected and grown under warm (24 °C) and cold (14 °C) conditions in a controlled environment. Dark-adapted chlorophyll fluorescence, specific leaf area (SLA) and net photosynthetic rate at a photosynthetically active radiation (PAR) of 1000 µmol m(-2) s(-1) (A1000) were measured. Photosynthetic light and CO2 response curves were obtained from 11 of the genotypes, and shoot growth rate was measured under field conditions. KEY RESULTS: A positive linear relationship was found between SLA and light-saturated photosynthesis (Asat) across genotypes, and also between shoot growth rate under cool field conditions and A1000 at 14 °C in a climate chamber. When lowering the temperature from 24 to 14 °C, one M. sacchariflorus exhibited significantly higher Asat and maximum photosynthetic rate in the CO2 response curve (Vmax) than other genotypes at 14 °C, except M × giganteus 'Hornum'. Several genotypes returned to their pre-chilling A1000 values when the temperature was increased to 24 °C after 24 d growth at 14 °C. CONCLUSIONS: One M. sacchariflorus genotype had similar or higher photosynthetic capacity than M × giganteus, and may be used for cultivation together with M × giganteus or for breeding new interspecies hybrids with improved traits for temperate climates. Two easily measured variables, SLA and shoot growth rate, may be useful for genotype screening of productivity and cold tolerance.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Poaceae/fisiologia , Clorofila/química , Clorofila/metabolismo , Genótipo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Ploidias , Poaceae/genética , Temperatura
12.
Theor Appl Genet ; 128(11): 2143-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26163769

RESUMO

KEY MESSAGE: WUE phenotyping and subsequent QTL analysis revealed cytosolic GS genes importance for limiting N loss due to photorespiration under well-watered and well-fertilized conditions. Potato (Solanum tuberosum L.) closes its stomata at relatively low soil water deficits frequently encountered in normal field conditions resulting in unnecessary annual yield losses and extensive use of artificial irrigation. Therefore, unraveling the genetics underpinning variation in water use efficiency (WUE) of potato is important, but has been limited by technical difficulties in assessing the trait on individual plants and thus is poorly understood. In this study, a mapping population of potatoes has been robustly phenotyped, and considerable variation in WUE under well-watered conditions was observed. Two extreme WUE bulks of clones were identified and pools of genomic DNA from them as well as the parents were sequenced and mapped to reference potato genome. Following a novel data analysis approach, two highly resolved QTLs were found on chromosome 1 and 9. Interestingly, three genes encoding isoforms of cytosolic glutamine synthase were located in the QTL at chromosome 1 suggesting a major contribution of this enzyme to photosynthetic efficiency and thus WUE in potato. Indeed, Glutamine synthetase enzyme activity of leaf extracts was measured and found to be correlated with contrasting WUE phenotypes.


Assuntos
Glutamato-Amônia Ligase/fisiologia , Fotossíntese , Proteínas de Plantas/fisiologia , Locos de Características Quantitativas , Solanum tuberosum/genética , Água/fisiologia , Mapeamento Cromossômico , Citosol/enzimologia , DNA de Plantas/genética , Glutamato-Amônia Ligase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
13.
Funct Plant Biol ; 42(2): 136-148, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480660

RESUMO

Quinoa (Chenopodium quinoa Willd.) grown under field conditions was exposed to five irrigation water salinities (0, 10, 20, 30 and 40dSm-1; 4:1 NaCl:CaCl2 molar ratio) from flowering, and divided between full irrigation and progressive drought (PD) during seed filling. Quinoa demonstrated homeostatic mechanisms which contributed to quinoa's extraordinary tolerance. Salinity increased K+ and Na+ uptake by 60 and 100kgha-1, respectively, resulting in maintenance of cell turgor by osmotic adjustment, and a 50% increase of the leaf's fresh weight (FW):dry weight (DW) ratio and non-significant increase in elasticity enhanced crop water-capacitance. Day respiration (Rd) increased 2.7 times at high salinity but decreased 0.6 times during drought compared with control. Mesophyll conductance (gm) tended to be negatively affected by salinity as the increased succulence (FW:DW) possibly decreased intercellular space and increased cell-wall thickness. However, the increased K+ uptake seemed to alleviate biochemical limitations, as maximum Rubisco carboxylation rate (Vcmax) and photosynthetic electron transport (J) tended to increase under salinity. Overall, salinity and PD restricted stomatal conductance (gs) and photosynthesis (An) moderately, leading to decreased leaf internal to ambient [CO2], increase of intrinsic-water-use-efficiency (An/gs). The saturated electrical conductivity (ECe) resulting in 50% yield was estimated to be 25dSm-1, reaching no yield at 51.5dSm-1.

14.
Funct Plant Biol ; 42(8): 770-781, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480720

RESUMO

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.

15.
Water Res ; 45(15): 4367-80, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21762945

RESUMO

The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O157:H7, and the virus indicator Salmonella Typhimurium bacteriophage 28B, were added weekly through irrigation tubes for one month with low irrigation rates (8 mm per week). In the following six months lysimeters were irrigated with groundwater free of pathogens. Two weeks after irrigation was started, phage 28B was detected in low concentrations (2 pfu ml(-1)) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy loam soil. The added bacterial pathogens were not found in any leachate samples during the entire study period of 212 days. Under the study conditions with repacked soil, limited macropores and low water velocity, bacterial pathogens seemed to be retained in the soil matrix and died-off before leaching to groundwater. However, viruses may leach to groundwater and represent a health risk as for some viruses only few virus particles are needed to cause human disease. The bacterial pathogens and the phage 28B were found on the potato samples harvested just after the application of microbial tracers was terminated. The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw.


Assuntos
Solo/parasitologia , Solanum tuberosum/parasitologia , Irrigação Agrícola , Dinamarca , Monitoramento Ambiental/instrumentação , Escherichia coli O157 , Humanos , Microbiologia do Solo , Poluentes do Solo/química , Poluentes da Água/química
16.
Funct Plant Biol ; 30(1): 65-73, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32688993

RESUMO

Both hydraulic and chemical signals are probably important in regulating leaf growth and stomatal conductance of soybean (Glycine max L. Merr.) under drought stress. However, until now they have not been investigated concomitantly in this species. To explore this, a pot experiment in a temperature-regulated greenhouse was conducted, in which plants were subjected to progressive drought during early reproductive stages. Biophysical parameters, viz. relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA], xylem pH and xylem [ABA] were followed in control and stressed plants. Drought stress decreased relative leaf expansion rate, stomatal conductance and leaf turgor, whereas it increased leaf [ABA], xylem pH and xylem [ABA]. As soil dried, significant differences between water treatments for relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA], xylem pH and xylem [ABA] were observed at 14, 9, 14, 14, 14 and 9 d after imposition of stress, respectively. The relationships of relative values for relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA] and xylem pH to the fraction of transpirable soil water (FTSW) were well described by linear-plateau functions that allowed calculation of the soil-water thresholds at which processes in stressed plants began to diverge from well-watered controls. The soil-water threshold for stomatal conductance (0.64) was significantly higher than that for relative leaf expansion rate (0.29), xylem pH (0.28), leaf [ABA] (0.27) and leaf turgor (0.25). Relative xylem [ABA] increased, first linearly (when FTSW > 0.5) and then exponentially (when FTSW < 0.5) with decreasing FTSW. Relative stomatal conductance decreased exponentially with increasing relative xylem [ABA] (r2=0.98). Decreased stomatal conductance coincided with an increase in xylem [ABA] and occurred before any significant change of leaf turgor could be detected, indicating that chemical signals (seemingly root-originated ABA) control stomatal behaviour at moderate soil water deficits. Relative relative leaf expansion rate was linearly correlated with relative leaf turgor (r2=0.93), relative xylem pH (r2=0.97) and relative leaf [ABA] (r2=0.98), implying that both hydraulic and chemical signals were probably involved in regulation of leaf expansion at severe soil water deficits.

17.
Plant Physiol ; 130(2): 591-604, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12376627

RESUMO

To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (-6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early post-pollination development (peaking at +3 d). In contrast, Incw2 mRNAs increased only after pollination. Drought repression of the Ivr2 soluble invertase also preceded changes in Incw2, with soluble activity responding before pollination (-4 d). Distinct profiles of Ivr2 and Incw2 mRNAs correlated with respective enzyme activities and indicated separate roles for these invertases during ovary development and stress. In addition, the drought-induced decrease and developmental changes of ovary hexose to sucrose ratio correlated with activity of soluble but not insoluble invertase. Ovary abscisic acid levels were increased by severe drought only at -6 d and did not appear to directly affect Ivr2 expression. In situ analysis showed localized activity and Ivr2 mRNA for soluble invertase at sites of phloem-unloading and expanding maternal tissues (greatest in terminal vascular zones and nearby cells of pericarp, pedicel, and basal nucellus). This early pattern of maternal invertase localization is clearly distinct from the well-characterized association of insoluble invertase with the basal endosperm later in development. This localization, the shifts in endogenous hexose to sucrose environment, and the distinct timing of soluble and insoluble invertase expression during development and stress collectively indicate a key role and critical sensitivity of the Ivr2 soluble invertase gene during the early, abortion-susceptible phase of development.


Assuntos
Aclimatação/fisiologia , Flores/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Zea mays/enzimologia , Ácido Abscísico/metabolismo , Aclimatação/genética , Metabolismo dos Carboidratos , Desastres , Fertilidade/genética , Fertilidade/fisiologia , Flores/enzimologia , Flores/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicosídeo Hidrolases/genética , Hexoses/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Sacarose/metabolismo , Fatores de Tempo , Água/metabolismo , Água/farmacologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , beta-Frutofuranosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...